Temporal Sampling and Interpolation

Billy Biggs 30 May 2003

http://scanline.ca/deinterlacing/

Software

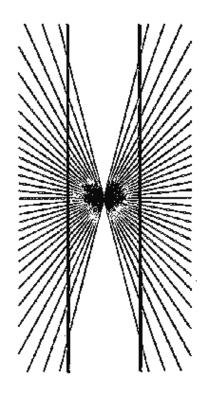
- **tvtime**: A realtime video deinterlacer. http://tvtime.sourceforge.net/
- movietime: A DVD deinterlacer.
 http://www.sourceforge.net/projects/movietime/
- **reetpvr**: An off-line 2-3 pulldown inverter. http://www.sourceforge.net/projects/reetpvr/

Overview

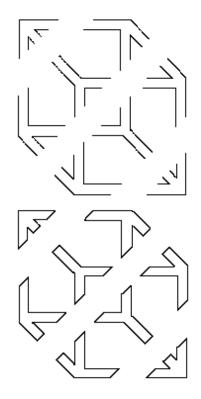
- Motion and the eye
- Film
- Video
- Converting film to video
- Converting video to progressive
- Problems, problems

Motion and the eye

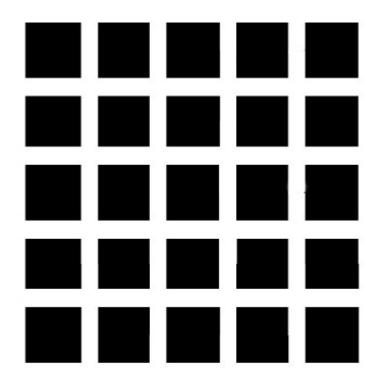
- In 1824, Peter Mark Roget wrote "Persistance of Vision with Regard to Moving Objects", used a rotating device with vertical slits to make still images appear as if they are in motion.
- Sparked alot of inventions, including the **Thaumascope**, a card with a picture on each side. If rotated fast enough, the two pictures merged into one.
- Eventually lead to film: early silent films used anything between 16 and 24 frames per second.


Motion and the eye: Observations

- Stroboscopic motion: still frames shown fast enough appear as motion
- Filter effects of the eye: The **Thaumascope** uses the "motion blur" effects of the eye: persistance can cause images shown rapidly in sequence to appear as one.
- Dithering is an example of how the eye acts as a low pass filter.
- Temporal aliasing: Spinning wheels that appear still or go backwards


Edges and perception

- The eye is sensitive to sharp changes in contrast.
- As well, the brain is able to use edge information
- Edges contain much of the information in the scene.


Some cool eye tricks related to edges, perception, and contrast sensitivity

Some cool eye tricks related to edges, perception, and contrast sensitivity

Some cool eye tricks related to edges, perception, and contrast sensitivity

More eye stuff: Flicker

- The eye is sensitive to high frequencies, despite the blurring effect, and more sensitive in the peripheral vision.
- Most computers complain about flicker if their monitor is at 60hz or lower.
- Most TV viewers don't mind: TV is brighter than a monitor, and further away.

How many frames per second

• From 100fps.com:

How many frames per second can the human eye see?

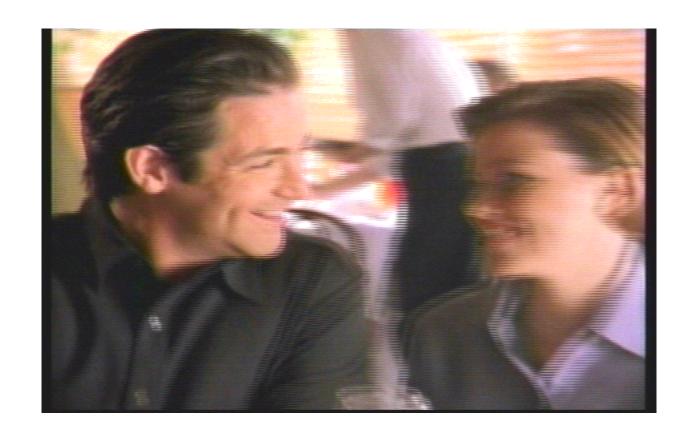
is NOT the same as: How many frames per second do I have to have to make motions look fluid?

And it's not the same as: How many frames per second makes the movie stop flickering?

And it's not the same as: What is the shortest frame a human eye would notice?

Frameless rendering

- Neat idea: Importance sample in time.
- Zagier 97, Bergman et al 86, some others
- Idea is that updating individual pixels can also achieve high quality animation.
- Poynton shows some arguments against this (Poynton97): doesn't work for standards conversion, and leads to spacial inconsistencies that are noticable. (edges over filtering)


Film

- Film is shot at 24 frames per second.
- Film aperature times are usually high enough that you get some gratuituous motion blur.
- 'Refresh rate' in a theatre is 48hz, each frame is shown twice, not usually noticable strobing.
- Slow enough that pans can be stuttery.

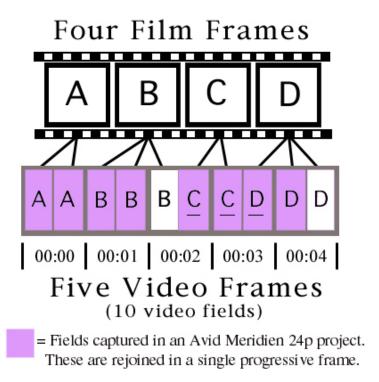
Video

- Video uses the blurring effects of the eye to compress video: interlaced video.
- Idea: Like the **Thaumascope**, rapidly switching between two low quality images to appear like a single high quality image.
- Interlaced video is a sequence of *fields* instead of frames.
- Each field is half of the scanlines of a full image: even and odd fields.

Video

Video standards

- North america is "NTSC style": Frames are 486 scanlines tall (each field is 243 scanlines), 59.94 fields per second.
- Most other places are "PAL style": Frames are 576 scanlines tall (each field is 288 scanlines), 50 fields per second.
- People say that PAL TVs flicker horridly.


Converting film to video

- Process is called **pulldown**.
- Easier case: 24fps film to 50fps PAL, known as **2-2 pulldown**.
- Film is sped up to 25fps, each frame is shown for two fields.

Converting film to video

- Harder case: 24fps film to 59.94fps NTSC, known as **3-2 pulldown**.
- 24 and 59.94 don't divide nicely, 24 and 60 are better.
- Pretend video is 60fps, show film as frames in a 2-3-2-3 pattern.
- Slow film down to 23.976fps and do this to get 59.94fps.

Pulldown

Converting film to video

• Other forms of pulldown used on older silent films (Metropolis).

Frame-based movies on a computer monitor

- Problem: computer monitors run at 60hz or 72hz or 85hz or whatever, have to design a more general algorithm.
- First solution: pulldown. Show frames multiple times, try and amortize.
- Some problems with 10ms scheduling: (3223233 instead of 232323).

Deinterlacing

- Deinterlacing is the process of converting fields to full frames.
- First method: Use linear interpolation for the 'missing' scanlines. This effectively emulates a television.

Temporal aliasing

- We're point sampling at a higher rate, should have no problems.
- First problem: Interlaced video. Uses the dithering effects of the eye.
- Without an even amortization, the effect is lost.
- Video fades between seeing more of the top fields/more of the bottom fields, looks like text is 'bouncing'.

Solutions for temporal aliasing

- First solution: Run at 59.94hz exactly, or 119.88hz. Requires triple buffering.
- Next solution: Try and make frames 'look complete', so if we favour top or bottom, we don't notice.

Motion detection in tytime

- Compare pixel in next and previous fields to ones above and below, try and decide if there is motion.
- Motion? Interpolate pixel, No change? Copy pixel.
- Lots of artifacts, never perfect.
- Tom Barry: Motion compensation code, use pixel search to detect motion.

Reasons to deinterlace

- Display.
- Lower rate. Many computers can't deal with 60fps video. Better to drop to 30fps, and the easy way to do this is to deinterlace every second field.
- Encoding. Want to store a high quality but low bitrate version. Most encoders can only handle full frames, not keep fields distinct.

Film to Video to Computer

• These motion methods aren't optimal for film material. It would be better to detect pulldown, and construct the appropriate full frames.

My pulldown detection method

top bot

- - - SAME
diff diff
SAME diff
diff diff
diff diff

Richard Felker's pulldown detection method

- Use blocks, look at four fields.
- Find block of largest difference, use that to make all decisions.

Problem cases: Mixed video and film content

- What to do if part of the frame is film and the rest is video?
- What to do if the video contains parts film, parts video, or crossfades between them?
- Problems: Many modern animated shows, documentaries about movies, or shows that composite logos.

Problem cases: Mixed video and film content

Problem cases: Film content edited as video

- Many, many shows go after the 'film look' by recording as film, but editing as video.
- Leads to pulldown that 'breaks' every scene change.
- Examples: Malcolm in the Middle, Buffy, Power Rangers, ...

More problem cases

- single pixel lines, intentional flicker, other hacks.
- 72hz or 59.94hz?
- Low bitrate encoding, high quality encoding.
- Broadcast TV stations that speed-up shows.
- Standards converters that use linear interpolation.

More on this

- irc.freenode.net on #livid
- http://scanline.ca/deinterlacing/